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Abstract--The film pool boiling on a horizontal tube is analyzed as a conjugated heat transfer problem. 
A non-dimensional parameter, H, which was deduced from the governing differential equations, has been 
used to characterize the peripheral wall heat conduction of the heater. The results are implicitly compared 
with that of the Bromley solution. 

I N T R O D U C T I O N  

Given uniform heat generation within a heater placed in an asymmetrical fluid flow boundary 
condition, as in the case of  a horizontally placed cylindrical heater in pool boiling, heat flows by 
conduction within the wall of the heater, creating a non-uniform wall surface temperature 
distribution. This is an example of  conjugated heat transfer problems and such conjugated heat 
transfer problems have been increasingly investigated recently. Some of  the studies on the problems 
for different aspects of heat transfer will be briefly mentioned. 

Sunden (1980), who studied the heat transfer from a circular cylinder with a heated internal core 
region in low Reynolds number flow, showed that the ratio of  the thermal conductivities of  the 
solid body and fluid has a significant influence on the heat transfer rate. 

Abramzon (1986), in his study of  heat transfer between a solid spherical particle and a uniform 
laminar flow, also found that the ratio of  the thermal conductivities of  the material of  the sphere 
and of the fluid was an important parameter which markedly affects both the local temperature 
and heat flux variation along the surface of  the sphere. 

Lee & Kakade (1976), who studied the effect of  peripheral wall conduction on heat transfer from 
a cylinder in cross flow, concluded that the local heat transfer was strongly influenced by the local 
thermal conditions, which are affected by the physical dimensions and thermal properties of  the 
heater. 

Baughn (1978) has demonstrated analytically that a circumferential conduction number, which 
is a function of  the wall properties and the boundary conditions, significantly affects the convection 
heat transfer in circular tubes. 

Cess (1962), who used a very simple approximate analysis on the forced-convection film boiling 
on a flat plate with uniform surface heat flux, has shown that the Nusselt number was greater by 
a factor of 1.41 for a uniform surface heat flux as compared to a constant wall temperature. 

Pool boiling heat transfer has been studied extensively for many years. The effects of fluid and 
thermal properties, of  surface finish and coating, of  orientation and geometry of  the heater(s), of  
agitation of  the working fluid, of  the force field etc., have been investigated and a large number 
of correlations have been proposed. Many of  the existing results on supposedly identical 
phenomena are inconsistent or differ widely from each other. 

It is obvious that to compare the experimental results obtained by different investigators, all 
parameters governing the heat transfer process should be set equal. Seldom included is the effect 
of the variation of surface temperature, which is dependent on the Blot number, and the specific 
heat generation rate of  the heater. A few studies on nucleate pool boiling heat transfer (Kovalev 
et aL, 1970; Berenson 1962; Magrini & Nannei 1975; Sauer et al. 1978; Jensen & Jackman 1984) 
indirectly recognize this variation of  the surface temperature on the surface heat transfer coefficient. 

A recent experimental study by Zeng & Lee (1987) showed that a non-dimensional circum- 

tOn leave from Nagasaki University, Nagasaki, Japan. 
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Figure 1. Idealized model. 

ferential conduction parameter has a significant effect on the nucleate pool boiling heat transfer 
process. 

Therefore, a study on the boiling heat transfer from a heater placed in an asymmetrical fluid 
flow condition must recognize the effect of the peripheral wall conduction on the overall heat 
transfer rate. However, no analytical study on film pool boiling heat transfer seems to exist which 
recognizes the effect of this peripheral wall conduction on heat transfer. 

In the present study the film pool boiling on a horizontal tube is analyzed as a conjugated heat 
transfer problem. A non-dimensional parameter, H, which was deduced from the governing 
differential equations, has been used to characterize the peripheral wall heat conduction of the 
heater. The results are compared with that of Bromley's (1950) analytical solution with zero vapor 
velocity at the vapor-liquid interface for an isothermal horizontal cylinder. 

The film 
generation, 
idealized in 

ANALYSIS 

pool boiling heat transfer from a long circular tube with a uniform specific heat 
placed horizontally in a saturated liquid, is considered in the present study--as 
figure 1. The assumptions are as follows: 

(i) In the vapor film region, the flow is steady and laminar and the heat transfer 
is by conduction only; i.e. the model of the vapor film used in the present 
analysis is essentially the same as that used by Bromley (1950). 

(ii) Uniform heat generation within the tube wall and an insulated inside wall 
surface. 

(iii) The effect of curvature of the tube is negligible. 
(iv) All physical properties are constant. 
(v) Radiation heat transfer is excluded. 

(I) For the tube wall 

Governing Equations and Boundary Conditions 

[1] 
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The boundary condition is 

Kw aTw = 0, [2] 
8Yw b 

where T, q and K are the temperature, specific heat generation and thermal conductivity, 
respectively; R, b, 0 and y are the outside radius of the tube, the wall thickness, the angle 
co-ordinate (figure 1) and the co-ordinate normal to the tube surface (figure 1); and the subscript 
w refers to the tube wall. 

(2) For the vapor film 
(a) Momentum equation: 

(b) Energy equation: 

~ 2 U  G 
#c ~ + g(PL -- pc)sin 0 = 0. [3] 

a:TG 
KG ~ = 0. [4] 

The boundary conditions are 

UG (0) = 0, uG (6) = 0, TG (6) = T~t, [5] 

where u, 6 and Tsa t a r e  the tangential velocity, vapor film thickness and saturation temperature, 
respectively; g, p and # are the gravity acceleration, density and viscosity, respectively, and the 
subscripts G and L refer to the vapor film and the liquid, respectively. 

(3) Interfacial boundary conditions 

(a) Heat flux at the vapor-liquid interface: 

t~ Tc I ~ dyG IhLG, 

where hLc is the latent heat of  evaporation. 
(b) Temperature and heat flux at the solid-vapor interface: 

Tw(O) = TG(O); Kw Orw = --KG OTc 
t~Yw o aye o" 

(c) Energy balance at the solid-vapor interface: 

f0( w 0yw o/  

where # is the average wall heat flux. 

[61 

[7] 

[8]  

Solutions 

The present problem is solved by the integral method. The integration of  [1] with the boundary 
condition [2] gives 

- + = 0 .  [9]  R 2 d0: Tw dyw Oyw 0 w 

Integrating [3] twice with the boundary condition [5] we obtain the necessary velocity profile. 
Integrating [4] together with [6] and the velocity profile obtained, we now have 

_KGt3TG =g(pL-- pG)pGhLG 1 d 
8Yc 0 12#c R dO (6 3 sin 0). [ 10] 
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The temperature distribution in the tube wall, Tw, is assumed to be 

[(~) l ( yw)21+f lo ,  [II] Tw=eo -2 \  b ) J 

where 0t 0 and flo are functions of  0 only. The radial temperature distribution given in [11] was 
obtained first by integrating [1] (neglecting the circumferential term), with the boundary condition 
[2]. To accommodate the circumferential variation of  temperature within the tube wall, functions 
~0 and flo are then introduced. T G is obtained by integrating [4] with the boundary condition [15]: 

TG = 7oll--(~-~)1 -k- Tsat, 

where Yo is a function of  0 only. 
From [11], it is seen that ~t o = (b/Kw)qo, where qo is defined as 

and 

qo = Kw OTw 
@ w  o 

flO = Tw, yw=O. 

?o = -~-  qo, 
*v* G 

qo = OyG o" 

It can also be seen from [12] that 

where qo is defined as 

[12] 

Applying the boundary conditions [7] and [8] to [l l] and [12] yields the following relationships 
between ct 0, flo and Y0: 

Kw6 
flo = - -  - °to + /'sat, [1 3] Kob 

gw6 
Yo = ~ ~ ~to [14] 

and 

and 

fo : (¢b 2 qb 
ct o dO = - -  x ~. /~w = ~  

Therefore, the temperature distributions for Tw and TG are: 

[15] 

[16] 

TG =~- -£~0  1 -- + T~t. [17] 

Substituting [16] and [17] into [9] and [10] respectively, we obtain the following ordinary 
differential equations: 

1 d 2 F / b  Kw \ 7 ~o (lb 
R2dO2 + + = o . 8 1  

and 

Kw g(PL-- P6)pGhLG 1 d 
--b -°t°= 12#6 RdO (63 sin 0)" [19] 
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We now introduce the following dimensionless parameters: 

A = ( f : ~ B  -I/3, dimensionless thickness of vapor film; 
\K]  

[20] 

~b = _0, dimensionless angle co-ordinate; [21] 
7Z 

1( 31 w l , ,  dimensionless outside wall superheat; [22] 

(RKG B-I,3 - -  , dimensionless relative conduction parameter in film boiling; [23] I4=\ bKw: 
where 

B = #G qb dimensionless film boiling parameter. [24] 
g(PL -- PG)pGhLG R2, 

The initial conditions for [18] and [19] are as follows: 

dA = 0, dr/ 0 
a(o) = a0, ~ 0 T~ = o, [25] 

where the value of A0 is considered as finite, but not determinable. Integrating now [18] and [19] 
with [25], together with the assumption that (Kw/Kc)>>(b/36),t will result in 

dr/ _ 2, [ -A3sin(x~b) -] 
n rt/-L ~ q~ / [26] 

dq~ 

and 
A d 

[A3sin(n~b)]. [27] 
r / -  12n dq~ 

Boundary conditions are taken from [25] and [15] together with [19]: 

dA = 0, lim {Aasin(nq~)} = 12n. [28] 
0 ~ 1  

The vapor film thickness, 6, the wall heat flux, q, the degree of superheating, (Tw, y=O - T~at), 
the heat transfer coefficient, h, and Nusselt number, Nu, are calculated from [26]-[28] (see the 
appendix). 

Local Values 

The local values can now be expressed as follows. 

(1) Vapor film thickness 

(2) Wall heat flux 

(3) Degree of superheating 

5 = RBI/3A. [29] 

q*=Kw w )" [301 

[31] 

tThe practical value of (b135) lies between 0 ~ 10 (51R ~-0.01 ~0.1 and blR ~-0 ~ 0.3), and the order of (K~/Kc) is 
about 103 . 
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(4) Nusselt number 
Two different Nusselt numbers may be defined as: 

(i) Nu,,a - h*'a(2R)~ = 2B - ,/3 ( 1 ) ,  

where 

h,, a - -  q* ' 

(Tw,yw = o -  Tsat)' 
and 

(ii) Nuo b-ho'b(2R)=2B-I/3(~) 
' K ~  

where 

h~,b = # 
(T~,y = o -  Tsat)" 

[32] 

[33] 

Average Values 
Two average Nusselt numbers corresponding to the local values are defined as follows: 

_ ~a(2R) _ 2B_1/3 f 1 ( i )  Nua 
Jo 

and 

f01 1 (ii) NUb =//b(2R) 2B ,/3 dgb. = 

[341 

[35] 

RESULTS AND DISCUSSION 

The results of  the present analysis are all presented in dimensionless parameters. Comparison 
is not made with experimental studies but with that of Bromley's (1950) analytical solution for zero 
vapor velocity at the vapor-liquid interface for an isothermal cylinder, which corresponds to the 
solution for the case of  H = 0 in the present analysis (see the appendix). 

In figure 2, the inverse correlations of the dimensionless thickness of  the local vapor film are given 
for H = 0 to H--} ~ .  The solution for the case of H = 0 corresponds to Bromley's analytical 
solution with zero vapor velocity at the vapor-liquid interface for an isothermal horizontal 
cylinder. It can be seen that, the larger the value of  H , t  the thinner the vapor film thickness. This 
implies that a higher value of H will result in a higher Nusselt number because the thermal 
resistance becomes smaller with the decreasing value of  the vapor film thickness. The maximum 
differences are seen at the forward stagnation point for all values of H. For  the cases of  H = 0 
and H = ~ ,  it is < 8 % ,  indicating that the effect of  H on the vapor film thickness is relatively 
insignificant. 1/A becomes zero at ~ --- l, and this is because the characteristics of the solution for 
the problem dictate that the vapor film thickness at ~ = 1 be infinite. 

The reciprocals of the dimensionless outside wall superheat which are equivalent to the local 
Nusselt numbers, NU~,b, [33], are shown in figure 3. The case of  H = 0 corresponds to the uniform 
outside wall temperature solution (i.e. Bromley's solution); and H -} ~ to the uniform outside wall 
heat flux solution. Non-uniformity of the dimensionless outside wall superheat increases with an 
increase in the value of  H. It can be seen that the effect of  H is significant. 

As pointed out by Baughn (1978), in experimental studies of  convective heat transfer in a circular 
tube, the measurements are usually made at the outside of  the tube to determine the inside wall 
thermal boundary condition which is then inferred by solving the heat conduction problem in the 

tThe value of H lies between 0.4 and 2.5 for an S.S.-304 stainless tube of o.d. = 25.4 mm, b/R = 0.05 to 0.3, working 
fluid of Freon-ll3 at 1 atm and average heat flux of 30kW/m 2. 
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Figure 2. Vapor film thickness. 

wall. Figure 3 illustrates that care must be taken to attach thermocouples in such situations so as 
to make meaningful temperature measurement.  

Figure 4 shows the circumferential wall heat flux distribution. Non-uniformity of  q,/(l increases 
with a decrease in the value of  H and the extreme is seen at H = 0, i.e. Bromley's solution for an 
isothermal ( l / r / =  const) horizontal cylinder. Since the vapor  film thickness is infinite at ck = 1, the 
ratio q,/C 1 becomes zero. The results shown in figure 4 are subjected to the condition that the total 
wall heat transfer rate is the same for all cases of  H, i.e. [8]. 

The solution by the present analysis for l / r / =  const and H = 0 is exactly identical to the Bromley 
solution for an isothermal horizontal cylinder with zero vapor  velocity at the vapor-l iquid interface 
(see the appendix). The functional relationship between the dimensionless relative conduction 
parameter,  H, the dimensionless thickness of  the vapor  film, A, and the dimensionless wall 
superheat, r/, at the forward stagnation point is illustrated in figure 5. The values of  A at ~b = 0 
and r/at  $ = 0 converge to the same constant value because, as shown in the appendix. A is exactly 
the same as r / for  the case of  H ~ oo. Thus, from [34] and [35], it can be seen that N u  a = Nub. For  
the values of  H from 0 to oo, the maximum variation of A was only about  7%, while that of  r/ 
was about  25%. 

Figure 6 shows the distribution of  the two average Nusselt numbers as a function of H. At H -- 0 
(the case of  a uniform outside wall temperature), there is no difference between the values of  Nua 
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and iqUb, which was expected. As the value o f  H increases, the difference between Nu ,  and N u  b 

increases, and they eventually converge to the same constant  value. The max imum difference in 
the values for H = 0 to H ~ oo is about  6%. 

The effect o f  H on the average Nusselt  numbers  starts to appear  as H becomes > 0.1. H in terms 
of  the Biot number,  Bi can be written as 

Bi 
H = - -  

0 u 

0 
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Figure 5. Effects of H on vapor film thickness and wall superheat at the forward stagnation point. 



FILM POOL BOILING HEAT TRANSFER 43 

0.55 

o . 3 4 _  

0 . 3 3  " 
0 . 3 2 7 5 - ~  / /  

0.32 i/ 
0 

- / /  i i i I I ' ' I I I I I I I , I I I I I r I I I I I / / "  

Nu a 

2 B "1/3 

I I I p l  i I I i l  I B I J l  i I i l l  I i i i l  I i I 

iO-Z IO-I I0  o I01 I0 z 
H 

Figure 6. Effect of H on the average Nusselt numbers. 

~ 0 . 3 4 6 4  

(;0 

where 

and 

Bi = fi(2R) 
Kw 

Cj = d~b, j = A or r/. 

The relat ionship between H and Bi as a funct ion o f  (b/R) is shown in figure 7 as an i l lustrat ion.  
The practical range of  (b/R) is about 0.05-0.3. 

From figures 6 and 7, it can be concluded that the effect of relative circumferential conduction 
on film pool boiling starts to appear when the values of Bi become >0.003 for (b/R) = 0.05 and 
0.02 for (b/R)= 0.3. 

As was discussed in conjunction with figure 3, figure 6 also illustrates that different numerical 
values of average h and Nu can result for the same experiment depending on the definition of 
averag___e_e for h and Nu. It can be seen from the present analysis, for the cases of  H = 0 and H --* ~ ,  
that Nua and Nub have exactly the same value. For 0 ~< H ~< oo, however, both are not the same 

j /7  j 
° ' r  - 
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H 

Figure 7. Relationship between H and Bi. 
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and Nua is always > Nu b . In experimental studies, usually only the value of Nub can be deduced 
from the average wall heat flux, t], and the distribution of the local wall superheat, (Tw.y, = o - Tsar). 
Therefore, one has to be very careful that the experimentally obtained average Nusselt numbers 
are compared correctly with the corresponding values from the theoretical analysis. 

It is important to point out that the dimensionless number H is an additional parameter to 
describe conjugated heat transfer problems on film pool boiling and is similar to those deduced 
by Lee & Kakade (1976) from the governing differential equations and by Chida & Katto (1976) 
from a vectorial dimensional analysis. This implies that additional dimensionless parameters are 
always needed to describe conjugated heat transfer problems, be they steady or unsteady. 

CONCLUSIONS 

The study leads to the following conclusions: 

1. For 0 ~< H ~< ~ ,  the effect of H on the vapor film thickness is relatively small, 
while the dimensionless outside wall superheat, r/, which equivalent to the local 
Nusselt number, NU~,b, is significantly affected by it. 

2. For 0 ~< H ~< oo, the maximum variation of the vapor film thickness at the forward 
stagnation point was only about 7%, while that of the outside wall superheat was 
about 25%. 

3. For H ~< 0.01, there is no difference between the values of Nua and NUb. As the 
value of H increases, the difference between Nua and Nu b increases and the values 
of Nua and NUb eventually converge to the same constant value. 

4. Since different numerical values of average h and Nu can result for the same 
experiment, depending on the definition of average for h and Nu, caution must 
be taken in measuring the local wall surface temperature distribution, except for 
the case where H = 0. 
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A P P E N D I X  

Transforming the variable A as 

[26] and [27] become 

and 

Solutions of [26]-[28] 

[A3 sin(Tr49) 3 4/3 
w=l -  / , 

dr/ 2 3 '4 ~-~ =x H(w / -49) 

[A.1] 

[A.2] 

dw 4 Vsin(n49) ]I/3 
d49 - 3 k 12~ J ~/" [A.3] 

The boundary conditions are 

w(O) = 0, w(1) = 1. [A.4] 

For the special cases of  (a) H = 0 and (b) H ~ oo, we can obtain the exact solutions for 
[A.2]-[A.4], as given below. 

(a) H =  0 

For this case, we obtain the following uniform outside wall temperature solution: 

and 

3 1 
r/ = 4 ~'l [-sin(Tt49)-]l/3 ~ 3.054, [A.5] 

J0 l  Jd49 

f t/4f  ) ,j, 
A = (12x)'/3 fo* [sin(g49 )11/3 d49 ~ [sin(n49)]I/3 d49 

ifo, Sin(x49)l/3d491,/4 ' [sin0r49)]4/3 ~3.520 [sin(~49)]4/3 [A.6] 

f t 1/4 
q~ - ~ ~ 0.8676 [sin(x49)]4/3 [A.7] 

A I_* [sin(n49)]'/3 d49 
10 

In this case, the two average heat transfer coefficients ,qa, and h'b, defined by [34] and [35], have 
exactly the same value: 

h-n_0 = ~a = h'b = 0.3275 B-'/3 = 0 4126F , [A.8] 
- • L J 

where D is the outside diameter of  the tube. 
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Since 

[A.8] can be rewritten as 

= & = o ( T . . , . = o  - = 

3 h 1/4 
5148 KGg(PL- -PG)PG LG I 

Equation [A.9] coincides with Bromley's (1950) analytical solution for zero vapor velocity at the 
vapor-liquid interface• 

(b) H - - * ~  

For this case, we obtain the following uniform outside wall heat flux solution: 

=V 12r~ 11/3, [A.IO] 

=F.  12rtqb l'" [A.I1] 
A = r/ Lsin(rtqb)] 

and 

q_2 = r/ = 1. 
A 

The average heat transfer coefficients are 

/ " ~ t  3 [ 1/3 h'a = h'b = 0.3464 B- I /3=O4364VKGg~ 'PL- -PG)pGhLG1  . 
• L j 

[A.12] 

[A.13] 

( c ) O <~ H <~ oo 

For the case, 0 ~< H ~< oo, the system given by [A.2]-[A.4] becomes a two-point boundary value 
problem with the initial value of r/ unknown at qb = 0. This was solved numerically using the 
"shooting method" (Conte & De Boor 1972) with the numerical integration by the fourth-order 
Runge-Kutta method. However, the Runge-Kutta  method is not applicable for the present system 
of [A.2]-[A.4] near the forward stagnation point (~b = 0), for which we used a series solution in 
the region of 4) = 0 to ~b = 0.01. The numerical calculation procedures by the shooting method are: 

(1) choose an initial value of r/; 
(2) calculate the values of r/and w from the series solution, with the assumed value 

of ~/and w = 0  at ~b = 0  in the region of ~b = 0 to $ =0.01; 
(3) integrate the differential equations [A.2] and [A.3] from ~b = 0.01 to ~b = 1 using 

the Runge-Kutta  method with a step size of 0.001; 
(4) the procedure is repeated until the calculated value of w at q~ --- 1 satisfies the 

following condition 

I w ~ = l - l l ~ < 5 . 1 0  -6. 

Numerical solutions of the system [A.2]-[A.4] were obtained in the range of H = 0.001 to 
H = 200. 


